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ABSTRACT

Camshaft failure in an interference engine such as that used in the 3.4 liter DOHC V8 
engine of the 1996-1999 Ford SHO (also known as the Ford Gen III SHO) could be a 
potentially lethal event. Sufficient literature indicating premature failure of the drive 
sprockets existed years before production commenced on the Ford Gen III SHO.  From 
the literature publicly available prior to production, we were able to use both a gear tooth 
stress model and a valve train resonance model to predict a band of failures remarkably 
consistent with the camshaft failures actually occurring after production.  Available Ford 
Gen III SHO camshaft failure data were analyzed by nonlinear least squares regression 
techniques.  The most probable camshaft failure mileage was found to occur at 
approximately 70,000 miles, beyond Ford warranty, but still early in engine life.  
Consistent with the physics of random impacts and the assumption of the use of St 52 
DOM steel tubing in camshaft assembly, the data were best fitted by a single Birnbaum-
Saunders distribution function to better than the 95% confidence level usually required by 
courts of law.  It is very unlikely that performance driving alone is responsible for all 
camshaft sprocket failures; rather, extreme performance driving may account only for the 
low mileage branch of the observed camshaft failure distribution and then only when 
very poor force locking and/or high lobe torques also occur.  Insufficient spline contact 
area appears to be the most likely source of sprocket failure, and, given the literature of 
the time and reasonable engineering expertise, this defect should have been recognized 
and corrected before production.  Lifetime predictions of two failure remedies are also 
reported.
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INTRODUCTION

Due to the interference design of the 3.4-liter DOHC V8 SHO engine, a camshaft 
sprocket failure usually leads to additional damage to valves, pistons, and other major 
engine parts.  Such a failure often leads to loss of vehicle control since power steering 
and power brakes are also lost when the engine fails.  At this writing, we are thankfully 
unaware of any associated fatalities.  A typical repair bill is around $6000, and a new 
engine can cost as much as $15,000.  A complaint has been filed against Ford Motor 
Company [1] alleging that Ford had knowledge of the camshaft sprocket product defect 
early in the product cycle.  It is the intent of this paper to show that engineering literature 
available to Ford and the public at large well before the time of manufacture strongly 
suggested that the sprocket of an assembled camshaft was a likely point of failure; and 
furthermore, that the failures were to be expected at the mileages later publicly reported.  
This paper will also show that corrective measures already known by at least as early as 
1992 could have been implemented either before or during the time of manufacture to 
avoid this product defect.   

Since early 2000 at least, an association of Gen III Ford SHO owners (V8SHO.com) has 
recorded the camshaft sprocket failures of their members [2].   As of mid-April 2004, 
some 385 sprocket failures (approximately 295 with mileages at failure) have been 
publicly documented by this organization.  While internal Ford records of these failures 
would most likely be a larger data sample, the public data are nevertheless a sufficiently 
large sample to recover significant information.   We have chosen to follow the analysis 
practices set forth by the National Institute of Standards and Technology (NIST) known 
as Exploratory Data Analysis (EDA).  EDA is a combination of graphical and numerical 
techniques [3].  For court compatibility where appropriate, we have also included the 
conventional chi-square statistical tests at the 95% confidence level [3,4].  

Crucial to further analysis is the assumption of the actual species of steel tubing used, and 
we have made speculations only.  Ford, however, is known to have used an assembled 
camshaft on the Mondeo, a V6 European model [5].  The supplier for that engine was 
identified as Thyssen-Krupp Presta.  No particular grade of steel tubing was revealed in 
that reference; but we do know from public import relief request documents [6] that only 
26Mn5 and St52 (both DIN 2393 grade) were specified as the highest European standard 
for drawn over mandrel (DOM) tubing intended for use in assembled camshaft 
manufacture.  St52 is a low carbon steel of high yield strength and well-known strain-life 
properties [7].  

Regardless of the actual assembly process used, the steel tubing is deformed to form 
features which engage the camshaft elements such as drive sprockets, bearing sleeves, 
and cam lobes.  The patent literature prior to 1995 points out a number of limitations of 
this kind of manufacturing, particularly the potential weakness of drive sprockets, 
although no quantitative physical arguments appeared.  An assembled camshaft patent 
[11] issued in 1992 and assigned to the company Emitec in Germany specifies St35 (an 
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older, weaker steel composition) or St52 as the tubing used in the preferred embodiments.  
A second patent (issued in 1991) also assigned to Emitec [12] specifically points out the 
potential for failure at the drive sprocket.  There are similarities between the drawings in 
the Emitec patents and the pictures shown on the member website [2].  Essential 
differences, however, are the internal spline design for the drive sprocket and the internal 
deformation pattern.  It is here that the contact area is obtained upon tubing expansion 
(see below).  An assembled camshaft and its method of manufacture wherein a star-
shaped mandrel is used for internal plastic expansion was patented by Bendoraitas and 
Clark [13,14] in 1989.  The patent was assigned to the Torrington Company.  The internal 
expansion of the Gen III Ford SHO camshaft shows evidence of the use of a star mandrel 
or similar device.  Consequently, it appears likely to this author that Thyssen-Krupp 
Presta was the supplier of camshafts for 3.4-liter DOHC V8 SHO engines and that some 
variation of the Emitec or Torrington assembly process was used.  

The methods of assembling camshafts were also well reported in the patent literature of 
the late 1980s and early 1990s.  All assemblies of the time appear to have been made in 
an elaborate jig where all lobes and sprockets are aligned before force locking.  Force 
locking is achieved by either hydraulic expansion of selected tubing regions [11], 
ballizing; i.e., forcing an extremely hard oversize metal ball (usually tungsten carbide) 
down the inside of the camshaft tubing [15,16], or splined mandrel expansion where a 
forming device is passed through the inside of the tubing [13,14].  As a result of any of 
these methods of manufacture, the tubing sees internal pressures in the range of 2000-
3500 bar (200-350 MPa) [11] and deforms plastically into the groove region between the 
element (sprocket, bearing sleeve, or lobe) splines.  Expansion of the outer diameter of 
the tubing in this region is typically no more than 10-15% of the tubing thickness [11].  
This means that the depth of the element must be designed appropriately in order to 
produce a contact area sufficiently large so that the stress applied on the tubing is low 
enough that the strain produced insures sufficiently long service life.  It should be noted 
that a service life on the order of 100 million-10 billion reversals is sought and that early 
fatigue designs for steels assumed infinite life beyond approximately 1 million reversals 
[17].   Even more recent strain-life models can overestimate the lifetime if insufficient 
data (or an insufficient data interval) is taken in the high fatigue cycle range.

MODELS AND CALCULATIONS

A table of approximately 1200 data pairs was generated for each equation in order that its 
graph could be presented with an equivalent resolution of  590 miles at 70,000 miles.  
At least five significant figures were carried through all exponential and logarithmic 
calculations.  Common software packages available today for such work are 
Mathematica, Matlab, and Mathcad.  Mathcad was chosen for this work because tabular 
data corresponding to a single graphical point could be extracted by the “trace” function.  
Similar operations using a lookup table could have been programmed with ease by 
workers in the late 1980s using the FORTRAN and BASIC computing environments.  
BASIC software of the time also had an internal graphics package sufficient for this 
work.   
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A physical model of failure.

We treat our expanded tube as if it were a gear with individual teeth that mesh with the 
camshaft element splines and fail in the manner of cantilevered beams.  Fig. 1a shows an 
actual cross-section of a Gen III camshaft drive sprocket [2] and Figs. 1b-d show the 
conceptual detail of the complementary tubing expansion region.    

Figure 1a.  A section of a failed Gen III camshaft drive sprocket.  Photo by 
Bob Gervais.  Downloaded from [2] with webmaster permission.

Figure 1b.  Cross-sectional model of Gen III camshaft tubing after force 
locking by star mandrel to the drive sprocket.  The outer splined edge of this 
tubing meshes with the concave grooved region of the sprocket shown above 
in Fig. 1a.  The radial expansion was exaggerated in this calculation for 
clarity [18].  
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U

Figure 1c.  Three-dimensional model of Gen III camshaft tubing after force 
locking by star mandrel to the drive sprocket.  The outer splined edge of this 
tubing meshes with the concave grooved region of the sprocket shown above 
in Fig. 1a.  The radial expansion was exaggerated in this calculation for 
clarity [18].  
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Figure 1d.  Detail of force locking tubing expansion.  (a): Before expansion.  
(b):  After expansion.  The radial displacement r is exaggerated for clarity.  
Although movement of material is shown, conservation of volume is 
assumed (see Method 2 below). 

Several models of gear tooth stress are available [19-21], but the simplest of these 
(available in 1981 [19]) suffices for further analysis if the ultimate strength and the elastic 
limit of the tubing material are known.  Fortunately, the entire stress-strain curve for St52 
steel was known at least as early as 1972 [22], and we have digitized data from that 
source for further use in lifetime prediction.  It should be noted that the slope of the 
elastic region of the stress-strain curve is almost invariant with temperature.  Thus we 
have confidence that a low-temperature curve will suffice to describe small camshaft 
element stresses at all operating temperatures.  Fig. 2 shows the stress-strain curve used.
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Figure 2.  Data digitized from the stress-strain curve of St52 steel at 20 
degrees C [22].  Note the logarithmic axes.

The strain-life of metals was investigated systematically in the early 1970s [23], and four 
parameter strain-life coefficients of St52 steel can be derived from the data reported at 
least as early as 1987 [7].  A strain-life equation for the total strain is

                                            


 f

E
2 Nf( )

b
  f 2 Nf( )

c


,                                      (1)

where f, b, f, c, E, and Nf are the fatigue strength coefficient, the fatigue strength 
exponent, the fatigue ductility coefficient, the fatigue ductility exponent, Young’s 
modulus, and the number of fatigue cycles, respectively.  The data presented in [7] show 
evidence of an endurance limit typical of triangular load waves of constant amplitude and 
frequency.  In a camshaft application, however, random load amplitudes and frequencies 
are applied; and consequently, a continually decreasing strain as a function of life rather 
than an endurance limit is expected [8].  A more appropriate representation of high cycle 
fatigue in this case is obtained when the coefficients of the strain-life equation are 
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calculated from single frequency test data representing both low and high cycle fatigue 
(beyond transition life) but not including noisy data typical of an endurance limit.  Figure 
3 shows the combined data for duplicate runs of St52 steel as well as the strain-life curves 
calculated [9] for single frequency and random frequency loading.  The random 
frequency case compares well to a later curve, also shown in Fig. 3, given by Ilzhofer, et 
al. [10] for multiple frequency impacts on a moment loaded round bar.  The coefficients, 
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b
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c
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,
                                  
obtained from a four parameter fit of that St52 strain-life curve, were used in all 
subsequent calculations in this work.  



13

1 10 100 1 103 1 104 1 105 1 106 1 107 1 108 1 109 1 1010 1 1011 1 1012
1 10 4

1 10 3

0.01

0.1

1

108 1010

Strain,  ,
mm/mm

Reversals, 2*Nf

Figure 3.  Strain-life data of St52 steel having E = 210,000 MPa from [7] and 
fitted curves:  Black dots, data from single frequency loading; Green solid 
line, fitted to endurance limit; Blue dash-dot, fitted neglecting endurance 
limit; Red solid line, a strain-life curve of St 52 with multiple frequency 
loading calculated with coefficients derived from [10].  The camshaft 
sprocket failure range of 108 – 1010 reversals is also shown.

In the elastic range of strain-life (high numbers of stress reversals), the fatigue curve can 
be approximated by

                                                      
 e

 f

E
2 Nf( )

b


 .                                                   (2)

When used with a simple model of gear tooth stress failure, knowledge of both stress-
strain and strain-life are sufficient to estimate the most probable number of reversals to 
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failure; and if a conversion from the number of reversals to mileage can be made, a most 
probable failure mileage can be calculated.  In the case of the expanded force-locked 
tubing, the radial expansion is an additional variable that can be used to estimate upper 
and lower limits of the failure mileage.  
     
Materials failures due to fatigue are usually characterized by either a lognormal or a 
Birnbaum-Saunders distribution (first reported in 1969 [24]), depending upon the 
assumed influence of prior load history.  In either distribution, a lower limit, most 
probable value, and upper limit are sufficient to estimate the entire failure distribution 
and its associated probability density.  We argue below for a failure model that uses the 
Birnbaum-Saunders distribution.  

Miner’s Rule.  
In order to discover a failure distribution, we must first find a physical basis for a failure 
model.  If we assume that each cam lobe impact force is independent of influence from 
previous impacts and is counteracted by an equal but opposite force on the drive sprocket 
splines, then those splines accumulate a sum of individual stresses Y where each applied 
stress has its own expectation, m, and variance, i.ethe crack growth that occurs in 
any one strain cycle is independent of that in any other cycle.  Miner’s rule states that the 
damage that occurs after n cycles, at a stress that produces failure at N cycles is 
proportional to n/N.  

The Birnbaum-Saunders Distribution.
We further assume that, at failure in many samples, the sum of the individual stresses Y 
will be distributed around some critical number of stresses w.  We seek the probability 
that n will be greater than w; and since n and w are large, we use the Central Limit 
Theorem [25,26] to produce a reduced variable T: 

                                                     

T
m n



w

 n


  .                                                 (3)      

Substitution of

 c 2 , w  , and m
1

 ,

where  is the median and c is a shape parameter leads to

                                         
T

1

c 2

n



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


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1

2
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
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
 .                                            (4)

According to the Central Limit Theorem, the distribution of failures is then a Gaussian 
function of T:
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The form above is known as the Birnbaum-Saunders cumulative probability density 
function (cdf).  Its derivative or probability density function (pdf) [27,28] is
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 .        (6)

If g (the most probable value of ) can be found, sufficient information to estimate the 
entire failure distribution (or its pdf) would then be known.  The exact solution for g can 
be found either by solving equation (6) for its maximum (this is usually done 
numerically) or by solving the analytical derivative of equation (6) for its zero crossing. 
Alternatively, a very good approximation for g can be derived as shown below.
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The Power Birnbaum-Saunders Approximation.
The Birnbaum-Saunders distribution described above is in fact a specific case of the 
generalized Power Birnbaum-Saunders distribution [27] which can be written in the cdf 
form

                                      
Q
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where 

0 c  , 0   , and 0 n 
, 

or otherwise in the pdf form
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, (8)

where
 1 is the Power Birnbaum-Saunders distribution,

=1 is the Birnbaum-Saunders distribution, and
                              

                              0
qlim

  is the pdf of the lognormal distribution, namely
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.                               (9)

Several Power Birnbaum-Saunders pdfs with arbitrary values of are shown in Fig. 4.  
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Figure 4.  The Power Birnbaum-Saunders distribution pdf (at 77and 
c=0.5) for several values of  as given in eq. 8:  red,  = 0.00001; blue,  = 
1; green,  = 2; magenta,  = 3; and dashed black,  = 4.  The most 
probable value of q as  approaches 0 is given by the term g.  The common 
median  is also shown.

We can now solve for g by setting the derivative of  with respect to n equal to zero:

n
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;(10)
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and consequently,

                                                             

g


exp c
2  .                                                      (11)

For

c 0.5 and  1
 ,

the error of the approximation is less than 1.3%.

A Priori Estimates of Failure.

Method 1:  Gear tooth stress limit model .
A common procedure in materials physics is to construct a stress-life curve from stress-
strain and strain-life curves.  In this manner, design stress and useful life are directly 
related.   This is equivalent to writing the stress as 

   ,
and the strain  as

  Nf( )
so that

   Nf( )  .

We can report the stress life as a function of actual miles driven if a suitable conversion is 
known.  If we assume that all the miles traveled are in overdrive (4th gear) and the final 
drive ratio is 28.4 mi/hr/1000 rpm [29], then, for a 4 valve/cylinder 4-stroke DOHC V8 
engine with simultaneous valve pair action in each cylinder, the conversion is 

                                                    
2 Nf

2

8451






 1 mile
,                                             (12)

where Nf is the number of impact cycles applied to the cam lobe by the valve spring.  
Figure 5 shows a graphical composite calculation for St52 steel which includes the elastic 
fatigue approximation for failure mileage.

A common European standard (published in 1981) for the stress limit bw on gear teeth 
such as those in our expanded force-locked tubing is [19]

                                                           

 bw

max   0.2
 .                                                   (13)



19

This means that 

bw 101.5 MPa 
.

Using the tie lines shown in Fig. 5, we find that the most probable failure mileage is 
indicated at 69,843 miles.  This number agrees closely with the elastic fatigue 
approximation (asymptotic limit shown in Fig. 5) of 66,442 miles.  
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Figure 5.  Stress-life curve (red) calculated from the total strain-life curve 
for St52 steel (blue).  The asymptotic elastic strain-life approximation (see 
eq. 2) is shown in black.  For a gear tooth stress limit of 101.5 MPa, a 
limiting strain of 0.00048322 mm/mm and an associated failure mileage of 
69843 miles are estimated.  

Limits of tubing expansion and resultant contact area.
The Breuer patent teaches that, for ductile steel tubing, the expected radial expansion 
during the force-locking process is between 10 to 15% of the wall thickness [11].  In 
addition, typical variations in wall thickness from a supplier are 40 microns [30,31].  For 
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a one mm thick wall similar to that used in the V8 SHO camshafts, the expected radial 
expansion is therefore only 96-156 microns (approximately 0.004-0.006 inches).  

Hamilton [32] has recently reported the spline depth (15.24 mm or 0.600 inches) and a 
number of splines (30) for the V8 SHO camshaft drive sprocket shown in Fig. 1.  We 
have sufficient data, therefore, to calculate the contact area, A, due to a single stress 
reversal:

                                                         A = r*nsplines*d ,                                                (14)

where                              
r = tubing radial expansion,

nsplines = # of sprocket splines, 
and

d = sprocket thickness or depth.

Stresses applied to tubing teeth.
Recalling that stress is actually a measure of applied pressure, we can, by definition, 
write the equation for maximum gear tooth stress as

                                                             
 bw

f bw

A ,                                                      (15)

where fbw is the applied tangential force associated with the high-cycle fatigue of the gear 
tooth.  

A Model of tool wear.

The radial expansion, ris known to be a scalar of the applied pressure [11].  If the 
contact area of the mandrel, ball, or partitioned hydraulic region is constant, then the 
expansion is actually proportional to the internal force fi applied over some constant area 
B:

                                                             
r k 1

f i

B


.                                                        (16)

In the first plastic regime of St 52 steel where the applied stress is greater than about 250 
MPa, the resulting strain is again roughly proportional to the applied stress, but with a 
constant of proportionality different from the elastic region (see Fig. 6.).  
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Figure 6.  Data digitized from the stress-strain curve of St52 steel at 20 
degrees C [22].  The blue line shows approximate linearity in the first plastic 
deformation region (approximately 250-325 MPa) used to form force locked 
tubing.

To deform the tubing for force locking, then, the internal force applied is proportional to 
x, the difference between the tubing ID and the mandrel OD:  

                                                             f i k 2 x( )                                                           (17)

When the tubing ID remains constant as in our case, x itself becomes proportional to the 
mandrel radius, r:

                                                             x k 3 r( )   .                                                        (18)  
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Substitution of eqs. 17 and 18 into eq. 16 gives

                                                            

r
r B

k 1 k 2 k 3
                                                  (19)

It is generally accepted that the wear process at constant temperature is of first kinetic 
order [33]; and consequently, the mandrel wear rate is related to the number of assembly 
passes  by

                                                           
r

d

d
 r( )

,                                                     (20)

where  is a constant.  Since we seek a measure of the distribution of rwe now 
substitute eq. 19 into eq. 20:

                                                          
r d

d
 r 

,                                           (21)

whose solution is

                                                           0 1 ln r  ,                                           (22)

where and  are constants.  The boundary conditions are merely the number of 
camshafts made (approximately 84,000) and the expansion limits (96 – 156 microns).
The normalized cdf of this distribution is shown in Fig. 7.  A median expansion value of 
112.5 microns was calculated.  
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Figure 7.  CDF function of eq. 22 showing a median expansion of 112.5 microns.

Solving eq. 15  by substitution of the median rof 112.5 microns (0.0044 inches) yields 
an fbw value which was then used in the same equation to estimate high and low values of 
applied stress.  The corresponding values of failure mileage were then read from the 
graph in Fig. 5 using the Mathcad “trace” function.  Values of the variables used are 
summarized in Table 1 below.  These values were also subsequently used to estimate the 
span of the failure distribution.
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Table 1.  Values of radial r, and failure mileage used to estimate the span of 
the failure distribution estimated by Method 1.  

Position r, microns MPa Mileage

low 96 118.95 22601
most probable 112.5 101.50 69843
high 156 73.20 748380

The low and high failure mileages constitute the estimated limits of the model failure 
distribution.  To a very good approximation, we can construct a band wherein the span of 
failures constitutes either 6 or 8 standard deviations.  The Birnbaum-Saunders constants 
for these two distributions are given in Table 2 below.

Table 2.  Birnbaum-Saunders constants for the failure pdf band of Method 1.

Span, std dev c miles

6 0.412 82796
8 0.309 76857

The predicted band of failure lies between the two curves as shown in Fig. 8. 
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Figure 8.  The band of camshaft sprocket failures calculated by Method 1:  
Upper bound: a span of 6 standard deviations between limiting gear tooth 
stress values was assumed; Lower bound:  a span of 8 standard deviations 
between limiting gear tooth stress values was assumed.  The most probable 
failure value, g, is 69,843 miles. See Table 2 for other parameters.   

Method 2:  Lobe torque model.

Upper and lower sprocket gear tooth stress limits can also be estimated if the maximum 
applied lobe torque and the limits of tubing expansion are known.  We approach the 
problem of applied torque by calculating both the applied valve spring force at each point 
on the surface of the cam lobe and the vector of the lobe lift as a function of camshaft 
rotation angle.  The lobe torque vector, is given by 

                                                                  f   ,                                                      (23)
or in magnitude terms by

                                                         f  sin    ,                                            (24)

where f is the force applied by the valve spring at the bearing point, is the distance from 
the center of the lobe base circle the bearing point of the cam follower, and  is the 
included angle between the lobe surface normal and the radius to the lobe bearing point. 
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An estimate of applied torque.
A sectioned cam lobe from a 3.4L DOHC V8 SHO engine is shown in Fig. 9.  This figure 
was scanned and digitized to produce x,y,z data which were then enhanced and converted 
to a lift profile using calibration data for the exhaust cam lobe [34] and a program written 
for this purpose [35].  

Figure 9.  A sectioned Gen III SHO cam lobe.  The outer circle shows the 
lobe base while the inner circle shows the spline base.  Image enhancement 
techniques were used to extract the lift profile.  Unmarked photo by Bob 
Gervais.  Downloaded with permission from [2].

A polar plot of the cam lobe is shown in Fig. 10, and a standard lift profile is shown in 
Fig. 11.  A spring constant of 146.87 pounds/inch was calculated from valve spring 
compression data [34] and was subsequently used by the program [35] to generate the 
cam lobe torque curve shown in Fig. 12.  A maximum applied torque of 4.688 N-m 
(41.49 inch-pounds) at zero revolution rate was estimated from the program. 
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Figure 10.  Polar plot of cam lobe from data digitized from [2] and 
calibrated according to [34].  All radial dimensions are given in mm.  The 
lobe radius  is given in red.  The base radius r is shown as dotted blue 
and the tube radius rt is shown in black.
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Figure 11.  A standard lobe lift plot generated from the data of Fig. 7.
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Figure 12.  An estimate of the torque applied by the cam-follower system 
at zero rpm for each lobe rotation.  Due to resonance contributions (see 
text below), the actual estimates are expected to be up to about 10% 
greater than the values shown.
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The relation of specific energy to applied torque.
The work, W, done on the material is, in magnitude terms,

                                                     W f w( )  ,                                                               (25)           

where w is the distance through which the force is applied.  Equation 25 is equivalent to 

                                                     W U V ,                                                                 (26)

where V is the sample volume subject to stress and U is the specific energy of the 
material.  The specific energy can be obtained by integrating the stress-strain curve:

                                                     

U     



d

 .                                               (27)

 Fig. 13 shows the result.  
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Figure 13.  Specific energy as a function of strain for St52 steel (logarithmic axes).  
The left branch of the curve represents the elastic region of the material.
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In the elastic region, U() simplifies to

                                                          
U


2

E
2 .                                                            (28) 

Under mandrel or hydraulic treatment, the element spline regions are compressed while 
plastic flow causes expansion into the element groove regions.  The sample volume 
after mandrel expansion is presumed to be unchanged.  Therefore, the volume subject 
to stress is 

                                                  V  d r o
2

r i
2

  ,                                                 (29)

where r0 and ri are the outer and inner tubing radii, respectively, and d represents the 
sprocket depth as previously.  Variations in tubing volume are, however, known to occur.  
As also noted in Method 1, a typical OD specification is 26.00  0.08 mm [30,31].  This 
variation can determine, to a first order, the estimated lifetime of a camshaft drive 
sprocket.

If we now recall the torque expression, eq. 24, and write it in magnitude terms for normal 
force incidence, we have simply 

                                                            f r( ) .                                                              (30)

Substitution of eqs. 25 and 26 into eq. 29 yields

                                                          
 U V

r

w


.                                                          (31)

Furthermore, the material strain in our tubing can be written as

                                                           


w

l ,                                                                 (32)
where 

                                                            l 2  r( ) .                                                       (33)

Consequently, after substitution of eqs. 31 and 32 into eq. 30, we have 

                                                            


U V

2   .                                                         (34)
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Substitution of eqs. 28 and 29 into eq. 34 gives (after conversion to N-m) the useful result

                                                        


 E d

4 10
3


r o

2
r i

2
 

,                                        (35)

which can be related to failure mileage via strain-life curves in a manner similar to that 
given in Method 1. 

Consideration of valve spring resonance forces.
In any engine using cams, the cam-follower system is subject to both forced and damped 
oscillations.  The Ford Gen III SHO engine has a direct cam-to-valve configuration (no 
rocker arms) where the viscous damping is minimized.  Norton [36] has adapted the 
solution of the forced damped harmonic oscillator (see also early references such as 
Synge and Griffith [37] for an alternative development of this solution) for cam-follower 
systems where the valve mass and spring constant are known.  The solution for the valve 
lift is  

                                     



1 2 


 0










2


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
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1

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
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
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
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
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






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

2


 ,                               (36)

where




2 m  0
,

and

 0
k

m ,
where

= system frequency,
           = damping constant,

             k = spring constant, and
                                                           m = valve mass.

As the system frequency approaches full resonance, additional force is placed on the 
valve spring and consequently additional peak torque is placed on the lobe.  Catastrophic 
resonance occurs when the rotational frequency closely approaches the natural frequency 
of the cam-to-valve system. In most modern engine designs, however, the rotational 
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speeds are held well below peak resonance frequency.  A design rule [36] for modern 
engines is that engine rotational speeds should be held sufficiently below resonance 
frequency so that only about 110% of the base applied spring force is achieved at 
maximum operational rotation speed. By design, the maximum rotation speed is 
consequently only about 33% of the rotation speed at maximum resonance force.  Fig. 11 
shows an estimate of the peak lobe torque (proportional to valve lift) for the Ford Gen III 
SHO engine as a function of engine speed.  
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Figure 11.  Estimated peak lobe torque as a function of crankshaft rotation 
speed.  Assumed values were:  m = 21.22 gram (1.212 x 10-4 blob [36]), k = 
25.72 N/mm (146.87 lb/in), and = 0.05.

In order to establish some most probable and limiting values of sprocket lifetime, the 
peak lobe torques corresponding to values within the design resonance interval were 
calculated for three cases of assumed engine service: (1) a limiting case at zero RPM 
which represents the minimum peak lobe torque that can possibly be applied; (2) a 
relatively conservative case typified by constant open interstate driving at approximately 
75 mph (cruise conditions) in 4th (top) gear; and (3) absurdly aggressive driving indicated 
by running the engine constantly at redline (equivalent to approximately 90 mph in 2nd

gear).  The torque values thus calculated are reported in Table 3 below. 
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Table 3.  Peak lobe torque values calculated according to designed valve 
lift resonance (see Fig. 11) and other variables associated with various 
driving styles encountered with the Ford Gen III SHO. 

Driving Style Immobile Conservative Aggressive
Crankshaft 
RPM

0 2655 7009 (redline)

Resonance 
Force

100% 101.5% 111%

Speed, MPH 0 75.4 89.5 
Transmission 
Gear

4th 4th 2nd

Torque, N-m 4.688 4.759 5.224

Using eq. 35 and typical supplier variations in tubing OD, a set of torque-mileage curves 
can be calculated.  The intersection of the torque lines from Table 3 with the torque-
mileage curves provides estimates of the limits of failure mileage for one cam lobe.  Fig. 
12 shows the result.
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Figure 12.  Torque-mileage curves for various OD St52 DOM tubing having an 
ID of 25 mm.  Red:  25.92 mm; Blue:  26.00 mm; and Black:  26.08 mm.  
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While a range of failure mileages is apparent for a single lobe of known peak torque, the 
drive sprocket actually counters the torque of all eight lobes on each camshaft.  This 
means that the drive sprocket is subject to eight times the number of stresses that each 
lobe endures.  Mathematically, if all eight lobes are equivalent, the net effect is to 
multiply the standard deviation of the lobe failure distribution by (8)1/2  [26, 38].  This 
means that the form of the Birnbaum-Saunders equation (eq. 6) becomes 

 sprocket
1

2 8  2  c 
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                                                                                                                                        .(36)

In a manner similar to that shown in Method 1, a band of failure can also be calculated 
using eq. 36.  The constants used are derived from Fig. 12 and are given in Tables 4 and 
5.  

Table 4.  Values of ro, from Fig. 12)and failure mileage used to estimate the 
span of the failure distribution.  

Position ro, mm N-m Mileage

Low 25.92 5.224 32,668
most probable 26 4.759 78,000
High 26.08 4.688 115,920

Table 5.  Birnbaum-Saunders constants for eq. 36

Span, std dev c miles

6 0.149 79,757
8 0.112 78,984

The graphical results are given in Fig. 13.
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Figure 13.  The band of camshaft sprocket failures estimated by Method 2 (eq. 
36):  Upper bound: a span of 6 standard deviations between limiting peak lobe 
torque values was assumed; Lower bound:  a span of 8 standard deviations 
between limiting peak lobe torque values was assumed.  The most probable 
failure value, g, calculated by Method 1, is shown for comparison. See Tables 4 
and 5 for other parameters.

This method does have the distinct advantage that the assumption of a gear tooth stress 
limit (as in Method 1, eq. 13) is not required.  Calculation of a failure band very similar 
to that produced by Method 1 does, however, support the validity of the criterion of the 
gear tooth stress limit.  A disadvantage of this method is that an accurate lobe lift profile 
is required.

Analysis of the Failure Data.
The publicly reported camshaft failure mileage data are sufficient in sample size to 
produce better than a 95% confidence level [39].  We chose to analyze this sample by 
first fitting a Birnbaum-Saunders equation to the cumulative data using a non-linear least 
squares technique in a program written for this purpose [40].  A residual plot (not shown) 
did not show any systematic deviation from the fitting scheme (for an example of the use 
of residual plots, see [41]).  We found an average deviation of the fit from the data of less 
than 4% and Chi-square significance at the 95% and 99% confidence levels.  This 
procedure also yields the median and shape parameters which can subsequently be used 
to calculate the derivative (pdf) equation for direct comparison with both binned data and 
the physical models previously described.  A Fourier transform of the data [3] did not 
yield evidence of multiple components above the sample noise. The data appear, then, to 
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be typical of one predominant manufacturing event (most likely using several camshaft 
assembly machines in parallel) and do not suggest large multiple production runs with 
significantly different medians and variances.  We cannot, however, rule out the 
possibility of a partial or whole production run that failed and was corrected before the 
expiration of the 36,000 mile warranty.  A small number of failures before the warranty 
expiration mileage have been reported.  These may be due to extremely low annual 
mileage rates such that the warranty time of 36 months had expired.  The cumulative 
data, the fitted Birnbaum-Saunders cdf, and the calculated fit constants are shown in Fig. 
14.  The fitted pdf is also shown against binned data in Fig. 15.  
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Figure 14.  Cumulative camshaft drive sprocket failures as a function of miles 
driven.  Red dots:  Reported failures as of April 2004; Black line:  Non-linear 
least squares fit of a simple Birnbaum-Saunders distribution cdf having the 
form of eq. 5.  The values of the fit constants are shown in the upper right 
corner of the figure.
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Figure 15.  Comparison of binned failure data (grey bars) with a simple 
Birnbaum-Saunders pdf having the form of eq. 6 (red line).  The bin interval 
was approximately 10,000 miles [40].  The fit constants shown are the same 
as those of Fig. 14.

RESULTS AND DISCUSSION

Comparison with Failure Models.
Figure 16 shows the curve of the pdf fitted from the failure plotted on the background of 
the failure bands predicted by Method 1 and Figure 17 shows an analogous comparison to 
the failure band derived from Method 2.  
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Figure 16.  Comparison of the sprocket failure band (cyan) calculated by 
Method 1 with the fitted pdf (from Fig. 15) of the failure data (black).
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Figure 17.  Comparison of the sprocket failure band (red) calculated by 
Method 2 with the fitted pdf of the actual failure data (black).  
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By either model method, the fitted pdf function of the failure data lies almost entirely 
within the error bands predicted.   Apparently, camshaft sprocket failures can be well 
predicted from general physical principles and the assumption of either a gear tooth stress 
limit or a design rule of valve train resonance, either of which were well known before 
Ford Gen III SHO engine production commenced.

A Vulnerability Estimate.
Either the models (Method 1 or Method 2) or the fitted failure function of Fig. 14 can be 
used further to estimate the vulnerability of the entire lot of Ford Gen III SHO vehicles to 
camshaft sprocket failure if the mean yearly mileage is known.  The Office of 
Transportation Technologies has estimated the mean yearly automobile miles driven at 
11,988 [45].   We have used that value and the fitted cdf of Fig. 14 to extract the fraction 
of vehicles subject to failure for the mean estimated mileage driven for each model year.  
Furthermore, the resulting vulnerability (mean aggregate % subject to fail) reported in 
Table 5 can only be expected to increase with the further passage of time.  

Table 5.  Mean vulnerability estimate (number and percentage) of camshaft 
sprocket failures for Ford Gen III SHO vehicles (before camshaft repair and 
preventive maintenance).   

Total
Model Year 1996 1997 1998 1999
Mean miles driven as of 6/2004 101898 89910 77922 65934
Mean yrs driven as of 6/2004 8.5 7.5 6.5 5.5
% Subject to fail 79.5 67.7 51.6 32.7
# Vehicles made [2] 5033 10133 2317 2247 19730
# Subject to fail 4001 6860 1196 735 12792

Mean aggregate 
% Subject to fail                 64.8

Methods to Extend Drive Sprocket Life.
Methods for extending the life of the camshaft drive sprocket were also discussed in the 
patent literature of the time [15,44].  Reduction of stress on the drive sprocket can be 
accomplished by crimping, dimpling, adhesive bonding, brazing, and welding [42].   
Methods for pinning the drive sprocket have also been reported [43,44].  Using the 
predictive methods given above, estimates of camshaft drive sprocket life after redesign 
for stress reduction can also be made.  

One remedy for stress reduction would have been merely to extend the depth (thickness) 
of the drive sprocket in the original design.  While this method would not permit 
convenient retrofits on existing Ford Gen III SHO camshafts, we offer the calculations 
for completeness.  If the depth, d, of the drive sprocket were elongated 50% from 15.24 
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mm to 22.86 mm, then, according to Method 1, the most probable failure mileage 
increases to 1,330,800 miles, and the expected failure pdf band is as shown in Fig. 18.  
Also note that, under these conditions, the onset of sprocket failure is not expected to 
occur until approximately 500,000 miles.
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Figure 18.  An estimate of the failure band (green) for a 50% increase in 
camshaft drive sprocket depth (thickness).  The actual failure pdf (black) is 
also shown for comparison.  

A second remedy for reduction of stress in assembled camshaft drive sprockets is 
welding.  This is often the method of choice if clearance for other camshaft elements is 
an issue.  Welding is a method that can add material to the stress region.  If the weld 
material is essentially the same as St52 steel; i.e., no foreign filler rod is used, and a 
sufficiently clean weld process is performed (TIG or laser welding, for example), then the 
weld on the drive sprocket can be modeled with the lifetime methods given above.  In 
particular, we can employ Method 1 and estimate a new contact area after welding and 
subsequently make a prediction of service lifetime based on the lowered sprocket stress.  
It is well known that Young’s modulus changes only minimally under such weld 
conditions; and so our values are unchanged for the purposes of prediction.  If, for 
instance, three welds each of size sufficient to produce 3 mm arc length in contact with 
the sprocket splines (the actual bead would be considerably longer since the spline 
occupies less arc length than the groove) and 3 mm width are placed symmetrically 
around the sprocket and bond to both the sprocket and the tubing, then Method 1 
estimates a lifetime as shown in Fig. 19.  The parameters used are given in Table 6.  The 
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onset of failures is estimated at beyond 500,000 miles, and the most probable failures are 
expected at about 1.5 million miles.  

Table 6.  Values of r, , and failure mileage for three symmetrically 
placed welds each of 3 mm arc length and 3 mm width.  The lifetime was 
subsequently estimated by Method 1. 

Position r, microns MPa, after weld Mileage

low 96 73.30 731,340
most probable 112.5 66.28 1,528,000
high 156 52.92 8,019,000
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Figure 19.  An estimate of the failure band (blue) if the drive sprocket were 
welded to the tubing with three beads sized and placed as described in the 
text above.  The actual failure pdf (black) is also shown for comparison.
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CONCLUSIONS AND RECOMMENDATIONS

We have demonstrated that the engineering, mathematics, and patent literature of the time 
before production of the Ford Gen III SHO engines should have enabled any engineer 
competent in this field to determine that the assembled camshafts in those engines would 
experience premature failure at the mileages later actually observed.  Furthermore, 
remedies (such as welding) could have been implemented prior to production.  On the 
basis of the results given in this paper, the following questions for legal discovery are 
recommended:

1. Was Thyssen-Krupp Presta in fact the supplier of the Ford Gen III SHO 
camshafts?

2. What camshaft specifications did the supplier provide to Ford Motor Co.?
3. What was the species and grade of steel actually used in the Ford Gen III SHO 

camshafts?
4. What was the OD runout tolerance of the tubing used?
5. Did Ford Motor Co. perform any lifetime estimates of these camshafts based on 

the supplied materials and dimensions before production? If so, what were the 
results?

6. Did Ford Motor Co. perform any destructive testing of these camshafts in engines 
before production began?

7. Did Ford Motor Co. perform any destructive testing of Gen III SHO camshafts 
with welded drive sprockets?  If so, what were the results?

8. According to Ford Motor Co. records, what percentage of the total Ford Gen III 
SHO production has experienced camshaft failure?

9. Before production, what was the cost estimate to (a) increase the drive sprocket 
depth; or (b) weld the drive sprocket after assembly?

10. Does Ford Motor Co. or its supplier(s) have internal company data that supports 
or refutes the assertions of this paper? 
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