Home | Mailing List | Specifications | Care and Feeding | Modifications | Vendors | Literature


The Indigo Engine 

(Thanks to Ford Media)

All-new V-12 engine

The Indigo is equipped with an all-new V-12 engine developed by the Core & Advanced Powertrain Engineering team within Ford's Advanced Vehicle Technology group, the organization responsible for generating new technologies for future production vehicles.

The V-12 is a 6.0-liter, four-cam, 48-valve, 60 degree engine which currently has an output of 435 hp (SAE net) at 6,100 rpm and 405 lbs-ft torque at 5,250 rpm. The engine is still undergoing development testing, but these are the expected final horsepower/torque levels when the engine is tuned to meet current and future projected emissions levels running through catalysts fitted to the stainless steel exhaust system.

As powerful as the engine is, one of its main features is the abundance of low-end torque. Approximately three-quarters of the V-12's maximum torque is available at just 1,000 rpm. The engine is also notable for its fuel efficiency and is expected to achieve over 28 mpg in normal highway driving.

The V-12 represents not only a very powerful engine but also a breakthrough in development cost and timing. This is largely the result of the unit's clever use of existing Ford engine components.

The basis for the V-12 is the current production 3.0-liter Duratec V-6 engine used in the 1996 Ford Taurus and Mercury Sable. It uses the same bore and stroke dimensions (89.0 mm x 79.5 mm) as the Duratec, and also shares its pistons, rings, rods, valves, valve seals, valve springs and retainers.

However, the V-12 block and cylinder heads are all-new, cast from 356-T6 aluminum alloy by Cosworth in Great Britain. The cylinder heads retain the Duratec's combustion chamber and exhaust port design. The intake ports incorporate a new, "tumble-port" design that creates low-rpm, intake-charge turbulence without the need for throttling one of each pair of intake valves.

Unlike the Duratec, the V-12 block is not a girdled design. Instead, it is deep-skirted for extra torsional stiffness. (The V-12 approximates the torsional rigidity of the Duratec V-6 despite its extra length.) The crankshaft is formed using an all-new casting process called "electro-slag casting", which is claimed to result in crankshafts that are 10 percent stronger than forged units.

Several other revisions were made to the Duratec design to adapt components to the new V-12 configuration. These include a new water pump, extra internal cooling passages and oil-spray jets that cool the underside of the pistons to add an extra measure of thermal control for sustained high-rpm driving, such as autobahn runs.

Dual spray fuel injectors -- single injectors for each cylinder that spray both intake ports at the same time -- are used in the V-12 and are similar to the components utilized in the last production Taurus SHO V-6 engine. Fuel is fed to the engine via pumps housed in the racing-style, bladder fuel cell. A dry sump system is also fitted to the engine to ensure consistent oil flow through the block.

Cooling is provided by twin 14 x 14-inch radiators, one each side of the passenger compartment, with air being force-fed through the large side air scoops behind the front tires. Additional cooling in low-speed driving is available from electric fans.

The V-12 is perfectly balanced to minimize noise, vibration and harshness (NVH). Included in its second-generation onboard diagnostic system (OBD II), is a flame ionization sensor which detects in-cylinder misfire.

The engine is also bolted rigidly to the chassis' passenger compartment rear bulkhead and also acts as a load-bearing member -- standard practice on Indy cars.

The development of the V-12 began prior to the Indigo project and took just 18 months from inception until the first engine was tested on a dyno in September 1995.




Gee I wonder which photo the  engine actually looks like? - Buford.





Contact Information